$V = 2286.5 (10) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 0.54 \text{ mm}^{-1}$

 $0.50 \times 0.50 \times 0.26 \text{ mm}$

20717 measured reflections

5224 independent reflections

2703 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 294 (2) K

 $R_{\rm int} = 0.080$

282 parameters

 $\Delta \rho_{\rm max} = 0.57 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A new salen ligand: 2,2'-[(spiro[4.4]nonane-1,6-diyl)dinitrilomethylidyne]bis(4,6-dichlorophenol)

Man Jiang, Lin-Tao Yu, Hui Ye and Xiang-Ge Zhou*

Institute of Homogeneous Catalysis, Department of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China Correspondence e-mail: scuzhouxg@163.com

Received 27 April 2007; accepted 10 May 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.086; wR factor = 0.277; data-to-parameter ratio = 18.5.

The title compound, $C_{23}H_{22}C_{14}N_2O_2$, was synthesized by the reaction of 1,1'-spiro[4,4]nonane-1,6-diamine and 3,5dichlorosalicylaldehyde. It is a new Schiff base containing a spirocyclic backbone and an approximate non-crystallographic C_2 axis. Two intramolecular $O-H \cdots N$ hydrogen bonds determine the relative orientation of the two benzene rings. Intermolecular $\pi-\pi$ stacking interactions between the phenyl rings and weak intermolecular $C-H \cdots Cl$ hydrogen bonds stabilize the structure. Cp1 and Cp2 are the centroids of the planes defined by atoms C11–C16 and C18–C23. The angle between the planes is only 0.8° and interplanar distances are Cp1 \cdots Cp2(x, y, z + 1) = 4.023 Å and Cp1 \cdots Cp2(x + 1, y, z + 1) = 4.032 Å.

Related literature

For information on the application of salen complexes to asymmetric catalysis, see Larrow *et al.* (1994), Li *et al.* (2006) and Lo *et al.* (2006). For related structures, see Zhou *et al.* (1999), Li *et al.* (2005) and Altona *et al.* (1971).

For related literature, see: Cram & Steinberg (1954); Ebeling *et al.* (2002).

Experimental

Crystal data

 $C_{23}H_{22}Cl_4N_2O_2$ $M_r = 500.23$ Monoclinic, $P2_1/n$ a = 8.052 (2) Å b = 33.489 (6) Å c = 8.881 (3) Å $\beta = 107.310$ (5)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.686, T_{max} = 0.869$

Refinement

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2···N2	0.82	1.88	2.597 (3)	146
$O1 - H1 \cdot \cdot \cdot N1$	0.82	1.86	2.589 (3)	148
$C2-H2A\cdots Cl1^{i}$	0.98	3.10	4.005 (3)	154
$C7 - H7B \cdot \cdot \cdot Cl1^{ii}$	0.97	2.87	3.734 (4)	149
C14−H14···Cl2 ⁱⁱⁱ	0.93	3.01	3.886 (3)	158
C6-H6···Cl3 ^{iv}	0.98	3.10	4.027 (3)	158
$C3-H3A\cdots Cl3^{v}$	0.97	3.00	3.874 (4)	151
$C21 - H21 \cdots Cl4^{vi}$	0.93	3.01	3.886 (3)	158
$C23-H23\cdots Cl4^{vii}$	0.93	3.16	4.023 (3)	154

Symmetry codes: (i) x - 1, y, z - 1; (ii) x, y, z - 1; (iii) -x + 1, -y + 1, -z + 2; (iv) x + 1, y, z + 1; (v) x, y, z + 1; (vi) -x - 1, -y + 1, -z - 1; (vii) -x, -y + 1, -z.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Student Innovation Foundation of Sichuan University and sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry of China. We also thank Sichuan University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2310).

References

- Altona, C., Graaff, R. A. G., Leeuwestein, C. H. & Romers, C. (1971). J. Chem. Soc. Chem. Commun. pp. 1305–1307.
- Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cram, D. J. & Steinberg, H. (1954). J. Am. Chem. Soc. 76, 2753-2757.

Ebeling, G., Gruber, A., Burrow, R. A., Dupont, J., Lough, A. J. & Farrar, D. (2002). *Inorg. Chem. Commun.* 5, 552–554.

- Larrow, J. F., Jacobson, E. N., Gao, Y., Hong, Y. P., Nie, X. Y. & Zepp, C. M. (1994). J. Org. Chem. 59, 1939–1942.
- Li, G. Y., Zhang, J., Chan, P. W. H., Xu, Z. J., Zhu, N. Y. & Che, C. M. (2006). Organometallics, **25**, 1676–1688.
- Li, Z. K., Yang, L., Liang, L., Che, C. M. & Zhou, X. G. (2005). Inorg. Chem. Commun. 8, 307–309.
- Lo, V. K. Y., Liu, Y. G., Wong, M. K. & Che, C. M. (2006). Org. Lett. 8, 1529– 1532.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Verson 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Zhou, X. G., Yu, X. Q., Huang, J. S., Li, S. G., Li, L. S. & Che, C. M. (1999). *Chem. Commun.* pp. 1789–1790.

Acta Cryst. (2007). E63, o3049-o3050 [doi:10.1107/S1600536807023148]

A new salen ligand: 2,2'-[(spiro[4.4]nonane-1,6-diyl)dinitrilomethylidyne]bis(4,6-dichlorophenol)

M. Jiang, L.-T. Yu, H. Ye and X.-G. Zhou

Comment

Chiral salen transition metal complexes have been widely and successfully applied in various asymmetric catalytic reactions (Larrow *et al.*, 1994; Li *et al.*, 2006; Lo *et al.*, 2006). Compared with a normal chiral salen ligand, derived from diamine with chiral carbons, such as cyclohexanediamine or 1, 2-diphenylethyldiamine, chiral salen with spiro scaffold has never been reported. In a continuation of our studies of salen complexes (Zhou *et al.*, 1999; Li *et al.*, 2005), we report here the synthesis and structure of the title compound. The rigid structure indicates its potential usage as a ligand in asymmetric synthesis.

The novel salen ligand (I) possesses a spirocyclic backbone, Fig. 1, and contains a non-crystallgraphic C_2 axis through the C1 atom, Fig. 1. The two five-membered rings adopt a conformation intermediate between envelope and half-chair forms but closer to the latter as reported for spiro[4,4]nonane-1,6-dione (Altona *et al.*, 1971) and nearly perpendicular to each other with a dihedral angle of 86.1 (3)° between the respective ring planes, which adds to the rigidity of the molecule. The two imine moieties are well separated and provide potential sites for coordination with metal ions. Furthermore, there are two intramolecular O—H···N hydrogen bonds in the ligand that define the conformation of the two benzene rings.

In the crystal structure there are intermolecular π - π stacking interactions between the C12–C19 and C15–C22 rings as well as a number of weak Cl…H–C hydrogen bonds, Fig 2.

Experimental

The salen ligand, 2,6-bis(3,5-dichlorosalicylaldimine)-1,1`-spiro[4,4]nonane was prepared by condensation of 3,5-dichlorosalicylaldehyde with 1, 1`-spiro[4,4]nonane-1,6-diamine, which was prepared by literature methods (Cram & Steinberg, 1954; Ebeling *et al.*, 2002). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol /methylene chloride (10:1) solution of (I). MS (EI) m/z: $500(M^+)$. Anal calculated for C23H22Cl4N2O2: C, 55.20; H, 4.40; N, 5.60. Found: C, 55.12; H, 4.48; N, 5.61.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, 0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, O—H = 0.82 Å, $U_{iso}(H) = 1.5U_{eq}(O)$ for the OH groups.

Figures

Fig. 1. A perspective view, with displacement ellipsoids drawn at the 30% probability level.

2,6-bis(3,5-dichlorosalicylaldimine)-1,1'-spiro[4,4]nonane

Crystal data	
$C_{23}H_{22}Cl_4N_2O_2$	$F_{000} = 1032$
$M_r = 500.23$	$D_{\rm x} = 1.453 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 7024 reflections
a = 8.052 (2) Å	$\theta = 1-27.5^{\circ}$
b = 33.489 (6) Å	$\mu = 0.54 \text{ mm}^{-1}$
c = 8.881 (3) Å	T = 294 (2) K
$\beta = 107.310 \ (5)^{\circ}$	Plate, colourless
$V = 2286.5 (10) \text{ Å}^3$	$0.50\times0.50\times0.26~mm$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	5224 independent reflections
Radiation source: fine-focus sealed tube	2703 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.080$
T = 294(2) K	$\theta_{\text{max}} = 27.6^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.686, T_{\max} = 0.869$	$k = -43 \rightarrow 43$
20717 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.086$
$wR(F^2) = 0.277$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0917P)^2 + 10.5P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.01	$(\Delta/\sigma)_{max} = 0.001$
5224 reflections	$\Delta\rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$
282 parameters	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
Drimony stom site location: structure inverient direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Experimental. ¹H NMR (CDCl₃, 400 MHz, δ, p.p.m.): 1.30–1.96 (m, 12H, CH₂), 3.13 (m, 2H, CH), 7.14 (m, 2H, Ar—H), 7.34 (m, 2H, Ar—H), 5.0 (br, 2H, –OH), 8.18 (s, 2H, HC=N).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	0.54922 (14)	0.61810 (3)	1.00270 (11)	0.0636 (3)
Cl2	0.23820 (16)	0.48030 (3)	0.76711 (14)	0.0695 (4)
C13	-0.44144 (15)	0.61516 (4)	-0.57224 (11)	0.0691 (3)
Cl4	-0.27100 (15)	0.47871 (3)	-0.24418 (13)	0.0658 (3)
01	0.3179 (3)	0.65320 (7)	0.7145 (3)	0.0504 (8)
H1	0.2512	0.6616	0.6317	0.076*
02	-0.1879 (3)	0.65165 (8)	-0.2998 (3)	0.0511 (8)
H2	-0.1096	0.6603	-0.2252	0.077*
N1	0.0794 (3)	0.65024 (8)	0.4446 (3)	0.0370 (8)
N2	0.0376 (3)	0.65020 (8)	-0.0213 (3)	0.0374 (8)
C1	0.0581 (4)	0.69371 (8)	0.2094 (3)	0.0267 (7)
C2	-0.0370 (4)	0.66977 (10)	0.3067 (3)	0.0347 (9)
H2A	-0.1101	0.6495	0.2388	0.042*
C3	-0.1546 (5)	0.70092 (12)	0.3505 (5)	0.0506 (11)
H3A	-0.2567	0.6883	0.3661	0.061*
H3B	-0.0924	0.7149	0.4465	0.061*
C4	-0.2054 (5)	0.72931 (13)	0.2129 (4)	0.0581 (12)
H4A	-0.1865	0.7567	0.2495	0.070*
H4B	-0.3274	0.7260	0.1548	0.070*
C5	-0.0928 (4)	0.71947 (10)	0.1091 (4)	0.0383 (9)
H5A	-0.0485	0.7437	0.0752	0.046*
H5B	-0.1591	0.7049	0.0164	0.046*
C6	0.1552 (4)	0.66987 (10)	0.1156 (3)	0.0329 (8)
Н6	0.2296	0.6499	0.1842	0.040*
C7	0.2688 (4)	0.70132 (11)	0.0676 (4)	0.0460 (10)

H7A	0.2046	0.7147	-0.0291	0.055*
H7B	0.3722	0.6892	0.0526	0.055*
C8	0.3169 (5)	0.73070 (14)	0.2072 (5)	0.0641 (13)
H8A	0.4389	0.7281	0.2662	0.077*
H8B	0.2955	0.7580	0.1697	0.077*
C9	0.2034 (4)	0.72019 (11)	0.3102 (4)	0.0392 (9)
H9A	0.1555	0.7442	0.3424	0.047*
H9B	0.2702	0.7060	0.4038	0.047*
C10	0.0692 (4)	0.61313 (10)	0.4599 (3)	0.0335 (8)
H10	-0.0101	0.5987	0.3813	0.040*
C11	0.1808 (4)	0.59175 (10)	0.6003 (3)	0.0346 (8)
C12	0.3006 (4)	0.61407 (10)	0.7220 (3)	0.0354 (9)
C13	0.3999 (4)	0.59259 (11)	0.8535 (4)	0.0401 (9)
C14	0.3822 (4)	0.55176 (11)	0.8680 (4)	0.0424 (10)
H14	0.4496	0.5383	0.9567	0.051*
C15	0.2626 (5)	0.53137 (11)	0.7486 (4)	0.0440 (10)
C16	0.1630 (4)	0.55106 (11)	0.6149 (4)	0.0386 (9)
H16	0.0840	0.5369	0.5351	0.046*
C17	0.0223 (4)	0.61260 (9)	-0.0209 (3)	0.0331 (8)
H17	0.0912	0.5980	0.0640	0.040*
C18	-0.1022 (4)	0.59139 (10)	-0.1519 (3)	0.0341 (9)
C19	-0.2007 (4)	0.61212 (10)	-0.2847 (3)	0.0352 (9)
C20	-0.3175 (4)	0.59040 (11)	-0.4050 (3)	0.0395 (9)
C21	-0.3378 (4)	0.54951 (12)	-0.3938 (4)	0.0446 (10)
H21	-0.4160	0.5355	-0.4749	0.054*
C22	-0.2402 (4)	0.53002 (11)	-0.2603 (4)	0.0408 (9)
C23	-0.1231 (4)	0.54973 (10)	-0.1397 (4)	0.0385 (9)
H23	-0.0581	0.5359	-0.0509	0.046*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0608 (6)	0.0764 (7)	0.0372 (4)	-0.0104 (5)	-0.0103 (4)	0.0129 (5)
Cl2	0.0771 (7)	0.0500 (5)	0.0698 (6)	0.0244 (5)	0.0041 (5)	0.0005 (5)
C13	0.0704 (6)	0.0789 (7)	0.0382 (4)	0.0185 (5)	-0.0142 (5)	-0.0151 (6)
Cl4	0.0741 (6)	0.0474 (5)	0.0617 (6)	0.0015 (5)	-0.0014 (5)	-0.0138 (5)
01	0.0647 (16)	0.0420 (14)	0.0342 (12)	-0.0015 (10)	-0.0010 (12)	-0.0001 (12)
O2	0.0674 (17)	0.0440 (14)	0.0312 (12)	0.0062 (10)	-0.0015 (12)	-0.0042 (12)
N1	0.0397 (14)	0.0396 (15)	0.0271 (12)	0.0079 (11)	0.0031 (11)	-0.0004 (12)
N2	0.0376 (14)	0.0449 (16)	0.0253 (12)	-0.0064 (11)	0.0025 (11)	0.0032 (12)
C1	0.0236 (12)	0.0258 (13)	0.0265 (13)	-0.0021 (12)	0.0010 (11)	-0.0012 (12)
C2	0.0297 (15)	0.0418 (17)	0.0253 (14)	0.0102 (12)	-0.0031 (12)	0.0005 (14)
C3	0.0442 (17)	0.058 (2)	0.0572 (19)	0.0088 (17)	0.0267 (15)	0.0075 (17)
C4	0.0477 (19)	0.070 (3)	0.064 (2)	0.0217 (18)	0.0290 (17)	0.0284 (18)
C5	0.0374 (16)	0.0386 (17)	0.0334 (15)	0.0108 (13)	0.0022 (14)	0.0107 (15)
C6	0.0286 (14)	0.0412 (17)	0.0258 (14)	-0.0050 (12)	0.0033 (12)	0.0019 (14)
C7	0.0397 (16)	0.055 (2)	0.0505 (18)	-0.0076 (16)	0.0237 (14)	-0.0055 (16)
C8	0.056 (2)	0.075 (3)	0.068 (2)	-0.024 (2)	0.0286 (19)	-0.0329 (19)

C9	0.0301 (15)	0.0456 (19)	0.0414 (16)	-0.0057 (15)	0.0098 (13)	-0.0082 (14)
C10	0.0346 (15)	0.0391 (17)	0.0249 (13)	0.0034 (12)	0.0059 (12)	-0.0012 (14)
C11	0.0360 (15)	0.0434 (18)	0.0252 (13)	0.0061 (13)	0.0102 (12)	0.0046 (14)
C12	0.0392 (16)	0.0430 (19)	0.0256 (13)	0.0017 (12)	0.0119 (12)	0.0021 (14)
C13	0.0350 (16)	0.057 (2)	0.0259 (14)	0.0013 (14)	0.0055 (13)	0.0101 (16)
C14	0.0440 (17)	0.055 (2)	0.0275 (14)	0.0114 (14)	0.0093 (14)	0.0158 (16)
C15	0.0451 (18)	0.0452 (19)	0.0425 (17)	0.0156 (15)	0.0143 (15)	0.0126 (16)
C16	0.0347 (16)	0.051 (2)	0.0290 (15)	0.0086 (14)	0.0075 (13)	0.0005 (15)
C17	0.0336 (15)	0.0359 (17)	0.0260 (13)	-0.0024 (12)	0.0031 (12)	0.0088 (14)
C18	0.0339 (15)	0.0411 (17)	0.0238 (13)	-0.0043 (13)	0.0030 (12)	-0.0020 (14)
C19	0.0385 (16)	0.0424 (18)	0.0233 (13)	0.0025 (12)	0.0073 (13)	-0.0018 (14)
C20	0.0379 (16)	0.056 (2)	0.0204 (13)	0.0046 (14)	0.0029 (13)	-0.0021 (16)
C21	0.0350 (16)	0.067 (2)	0.0293 (15)	-0.0035 (15)	0.0064 (13)	-0.0143 (17)
C22	0.0396 (17)	0.0437 (19)	0.0362 (16)	0.0000 (15)	0.0067 (14)	-0.0034 (15)
C23	0.0401 (17)	0.0437 (19)	0.0276 (14)	-0.0008 (13)	0.0038 (13)	-0.0006 (15)

Geometric parameters (Å, °)

Cl1—C13	1.727 (3)	C7—C8	1.540 (5)
Cl2—C15	1.735 (4)	С7—Н7А	0.9700
Cl3—C20	1.734 (3)	С7—Н7В	0.9700
Cl4—C22	1.748 (4)	C8—C9	1.514 (6)
O1—C12	1.321 (4)	C8—H8A	0.9700
O1—H1	0.8200	C8—H8B	0.9700
O2—C19	1.338 (4)	С9—Н9А	0.9700
O2—H2	0.8200	С9—Н9В	0.9700
N1—C10	1.255 (4)	C10-C11	1.486 (4)
N1—C2	1.458 (4)	С10—Н10	0.9300
N2—C17	1.265 (4)	C11—C16	1.380 (5)
N2—C6	1.457 (4)	C11—C12	1.427 (4)
C1—C6	1.526 (5)	C12—C13	1.402 (4)
C1—C9	1.527 (4)	C13—C14	1.385 (5)
C1—C2	1.539 (5)	C14—C15	1.383 (5)
C1—C5	1.539 (4)	C14—H14	0.9300
C2—C3	1.535 (5)	C15—C16	1.386 (4)
C2—H2A	0.9800	С16—Н16	0.9300
C3—C4	1.506 (5)	C17—C18	1.473 (4)
С3—НЗА	0.9700	С17—Н17	0.9300
С3—НЗВ	0.9700	C18—C19	1.395 (4)
C4—C5	1.510 (6)	C18—C23	1.413 (5)
C4—H4A	0.9700	C19—C20	1.399 (4)
C4—H4B	0.9700	C20—C21	1.386 (5)
C5—H5A	0.9700	C21—C22	1.376 (5)
С5—Н5В	0.9700	C21—H21	0.9300
C6—C7	1.537 (5)	C22—C23	1.368 (4)
С6—Н6	0.9800	С23—Н23	0.9300
C12—O1—H1	109.5	С7—С8—Н8В	110.4
С19—О2—Н2	109.5	H8A—C8—H8B	108.6
C10—N1—C2	119.3 (3)	C8—C9—C1	106.0 (3)

C17—N2—C6	119.1 (3)	С8—С9—Н9А	110.5
C6—C1—C9	101.3 (3)	С1—С9—Н9А	110.5
C6—C1—C2	117.1 (3)	С8—С9—Н9В	110.5
C9—C1—C2	113.3 (3)	С1—С9—Н9В	110.5
C6—C1—C5	114.9 (2)	Н9А—С9—Н9В	108.7
C9—C1—C5	110.4 (2)	N1-C10-C11	121.7 (3)
C2—C1—C5	100.3 (2)	N1-C10-H10	119.2
N1—C2—C3	112.5 (3)	C11—C10—H10	119.2
N1—C2—C1	113.7 (3)	C16—C11—C12	120.7 (3)
C3—C2—C1	103.7 (3)	C16—C11—C10	120.1 (3)
N1—C2—H2A	108.9	C12—C11—C10	119.1 (3)
C3—C2—H2A	108.9	O1—C12—C13	120.6 (3)
C1—C2—H2A	108.9	O1—C12—C11	122.6 (3)
C4—C3—C2	105.2 (3)	C13—C12—C11	116.8 (3)
С4—С3—НЗА	110.7	C14—C13—C12	122.4 (3)
С2—С3—НЗА	110.7	C14—C13—Cl1	119.0 (2)
С4—С3—Н3В	110.7	C12—C13—Cl1	118.7 (3)
С2—С3—Н3В	110.7	C15—C14—C13	118.9 (3)
НЗА—СЗ—НЗВ	108.8	C15—C14—H14	120.5
C3—C4—C5	106.9 (3)	C13—C14—H14	120.5
C3—C4—H4A	110.3	C14—C15—C16	121.0 (3)
C5—C4—H4A	110.3	C14—C15—Cl2	119.1 (3)
C3—C4—H4B	110.3	C16—C15—Cl2	119.8 (3)
C5—C4—H4B	110.3	C11-C16-C15	120.1 (3)
H4A—C4—H4B	108.6	C11-C16-H16	120.0
C4—C5—C1	106.4 (3)	C15—C16—H16	120.0
C4—C5—H5A	110.4	N2—C17—C18	121.4 (3)
C1—C5—H5A	110.4	N2—C17—H17	119.3
C4—C5—H5B	110.4	C18—C17—H17	119.3
C1—C5—H5B	110.4	C19—C18—C23	120.4 (3)
H5A—C5—H5B	108.6	C19—C18—C17	120.7 (3)
N2—C6—C1	112.4 (2)	C23—C18—C17	118.9 (3)
N2—C6—C7	111.7 (3)	O2—C19—C18	122.4 (3)
C1—C6—C7	103.7 (3)	O2—C19—C20	119.5 (3)
N2—C6—H6	109.6	C18—C19—C20	118.1 (3)
С1—С6—Н6	109.6	C21—C20—C19	121.7 (3)
С7—С6—Н6	109.6	C21—C20—Cl3	118.9 (2)
C6—C7—C8	104.0 (3)	C19—C20—Cl3	119.4 (3)
С6—С7—Н7А	111.0	C22—C21—C20	118.8 (3)
С8—С7—Н7А	111.0	C22—C21—H21	120.6
С6—С7—Н7В	111.0	C20—C21—H21	120.6
С8—С7—Н7В	111.0	C23—C22—C21	122.0 (3)
H7A—C7—H7B	109.0	C23—C22—Cl4	119.4 (3)
C9—C8—C7	106.6 (3)	C21—C22—Cl4	118.6 (3)
C9—C8—H8A	110.4	C22—C23—C18	119.1 (3)
C'/—C8—H8A	110.4	C22—C23—H23	120.5
С9—С8—Н8В	110.4	C18—C23—H23	120.5
C10—N1—C2—C3	119.2 (4)	C10-C11-C12-O1	-0.7 (5)
C10—N1—C2—C1	-123.3 (3)	C16-C11-C12-C13	1.3 (5)

C6-C1-C2-N1	71.0 (3)	C10-C11-C12-C13	178.6 (3)
C9—C1—C2—N1	-46.3 (4)	O1-C12-C13-C14	178.1 (3)
C5—C1—C2—N1	-164.0 (3)	C11-C12-C13-C14	-1.2 (5)
C6—C1—C2—C3	-166.5 (2)	O1-C12-C13-Cl1	-1.7 (5)
C9—C1—C2—C3	76.1 (3)	C11—C12—C13—Cl1	179.0 (3)
C5—C1—C2—C3	-41.5 (3)	C12—C13—C14—C15	0.2 (6)
N1—C2—C3—C4	156.4 (3)	Cl1—C13—C14—C15	180.0 (3)
C1—C2—C3—C4	33.1 (3)	C13-C14-C15-C16	0.8 (6)
C2—C3—C4—C5	-10.6 (4)	C13-C14-C15-Cl2	-179.3 (3)
C3—C4—C5—C1	-15.9 (4)	C12-C11-C16-C15	-0.3 (5)
C6—C1—C5—C4	161.9 (3)	C10-C11-C16-C15	-177.7 (3)
C9—C1—C5—C4	-84.3 (3)	C14—C15—C16—C11	-0.7 (6)
C2—C1—C5—C4	35.4 (3)	Cl2—C15—C16—C11	179.4 (3)
C17—N2—C6—C1	-109.3 (3)	C6—N2—C17—C18	176.3 (3)
C17—N2—C6—C7	134.5 (3)	N2-C17-C18-C19	3.4 (5)
C9—C1—C6—N2	-163.8 (3)	N2-C17-C18-C23	-175.3 (3)
C2-C1-C6-N2	72.4 (3)	C23—C18—C19—O2	178.6 (3)
C5—C1—C6—N2	-44.8 (4)	C17—C18—C19—O2	-0.1 (5)
C9—C1—C6—C7	-42.9 (3)	C23-C18-C19-C20	-1.0 (5)
C2—C1—C6—C7	-166.7 (2)	C17-C18-C19-C20	-179.7 (3)
C5—C1—C6—C7	76.1 (3)	O2-C19-C20-C21	-178.9 (3)
N2—C6—C7—C8	155.0 (3)	C18—C19—C20—C21	0.7 (5)
C1—C6—C7—C8	33.7 (3)	O2-C19-C20-Cl3	0.7 (5)
C6—C7—C8—C9	-11.1 (4)	C18—C19—C20—Cl3	-179.7 (3)
C7—C8—C9—C1	-15.7 (4)	C19—C20—C21—C22	0.1 (6)
C6—C1—C9—C8	36.1 (3)	Cl3—C20—C21—C22	-179.5 (3)
C2—C1—C9—C8	162.4 (3)	C20-C21-C22-C23	-0.6 (6)
C5—C1—C9—C8	-86.1 (3)	C20-C21-C22-Cl4	178.1 (3)
C2-N1-C10-C11	-178.2 (3)	C21—C22—C23—C18	0.3 (6)
N1-C10-C11-C16	178.4 (3)	Cl4—C22—C23—C18	-178.4 (3)
N1-C10-C11-C12	1.0 (5)	C19—C18—C23—C22	0.5 (5)
C16—C11—C12—O1	-178.0 (3)	C17—C18—C23—C22	179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O2—H2…N2	0.82	1.88	2.597 (3)	146	
01—H1…N1	0.82	1.86	2.589 (3)	148	
C2—H2A···Cl1 ⁱ	0.98	3.10	4.005 (3)	154	
C7—H7B…Cl1 ⁱⁱ	0.97	2.87	3.734 (4)	149	
C14—H14····Cl2 ⁱⁱⁱ	0.93	3.01	3.886 (3)	158	
C6—H6···Cl3 ^{iv}	0.98	3.10	4.027 (3)	158	
C3—H3A···Cl3 ^v	0.97	3.00	3.874 (4)	151	
C21—H21···Cl4 ^{vi}	0.93	3.01	3.886 (3)	158	
C23—H23···Cl4 ^{vii}	0.93	3.16	4.023 (3)	154	
Symmetry codes: (i) $x-1$, y , $z-1$; (ii) x , y , $z-1$; (iii) $-x+1$, $-y+1$, $-z+2$; (iv) $x+1$, y , $z+1$; (v) x , y , $z+1$; (vi) $-x-1$, $-y+1$, $-z-1$; (vii) $-x$, $-x-1$; (vii) $-$					

-y+1, -z.

